Caenorhabditis elegans DNA mismatch repair gene msh-2 is required for microsatellite stability and maintenance of genome integrity.
نویسندگان
چکیده
Mismatch repair genes are important in maintaining the fidelity of DNA replication. To determine the function of the Caenorhabditis elegans homologue of the MSH2 mismatch repair gene (msh-2), we isolated a strain of C. elegans with an insertion of the transposable element Tc1 within msh-2. Early-passage msh-2 mutants were similar to wild-type worms with regard to lifespan and meiotic chromosome segregation but had slightly reduced fertility. The mutant worms had reduced DNA damage-induced germ-line apoptosis after genotoxic stress. The msh-2 mutants also had elevated levels of microsatellite instability and increased rates of reversion of the dominant unc-58(e665) mutation. In addition, serially passaged cultures of msh-2 worms died out much more quickly than those of wild-type worms. These results demonstrate that msh-2 function in C. elegans is important in regulating both short- and long-term genomic stability.
منابع مشابه
Mutation rates, spectra and hotspots in mismatch repair-deficient Caenorhabditis elegans.
Although it is clear that postreplicative DNA mismatch repair (MMR) plays a critical role in maintaining genomic stability in nearly all forms of life surveyed, much remains to be understood about the genome-wide impact of MMR on spontaneous mutation processes and the extent to which MMR-deficient mutation patterns vary among species. We analyzed spontaneous mutation processes across multiple g...
متن کاملThe relative roles of three DNA repair pathways in preventing Caenorhabditis elegans mutation accumulation.
Mutation is a central biological process whose rates and spectra are influenced by a variety of complex and interacting forces. Although DNA repair pathways are generally known to play key roles in maintaining genetic stability, much remains to be understood about the relative roles of different pathways in preventing the accumulation of mutations and the extent of heterogeneity in pathway-spec...
متن کاملFrequent germline mutations and somatic repeat instability in DNA mismatch-repair-deficient Caenorhabditis elegans.
Mismatch-repair-deficient mutants were initially recognized as mutation-prone derivatives of bacteria, and later mismatch repair deficiency was found to predispose humans to colon cancers (HNPCC). We generated mismatch-repair-deficient Caenorhabditis elegans by deleting the msh-6 gene and analyzed the fidelity of transmission of genetic information to subsequent generations. msh-6-defective ani...
متن کاملGenome integrity is regulated by the Caenorhabditis elegans Rad51D homolog rfs-1.
Multiple mechanisms ensure genome maintenance through DNA damage repair, suppression of transposition, and telomere length regulation. The mortal germline (Mrt) mutants in Caenorhabditis elegans are defective in maintaining genome integrity, resulting in a progressive loss of fertility over many generations. Here I show that the high incidence of males (him)-15 locus, defined by the deficiency ...
متن کاملA Distinct Class of Genome Rearrangements Driven by Heterologous Recombination
Erroneous DNA repair by heterologous recombination (Ht-REC) is a potential threat to genome stability, but evidence supporting its prevalence is lacking. Here we demonstrate that recombination is possible between heterologous sequences and that it is a source of chromosomal alterations in mitotic and meiotic cells. Mechanistically, we find that the RTEL1 and HIM-6/BLM helicases and the BRCA1 ho...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 99 4 شماره
صفحات -
تاریخ انتشار 2002